Tabla 1: Ejemplos de enfermedades con desequilibrio ácido - base

Enfermedad	рН	pCO ₂	HCO₃⁻	Diagnóstico
Diabetes mellitus tipo 2 (cetoacidosis diabética)	Disminuido	Normal o disminuido	Disminuido	Acidosis metabólica
Ejercicio muscular intenso	Disminuido	Normal o disminuido	Disminuido	Acidosis metabólica
Insuficiencia renal crónica	Disminuido	Normal o disminuido	Disminuido	Acidosis metabólica
Diarrea	Disminuido	Normal o disminuido	Disminuido	Acidosis metabólica
Vómito (gástrico)	Aumentado	Normal o aumentado	Aumentado	Alcalosis metabólica
Enfermedad pulmonar obstructiva crónica (EPOC)	Disminuido	Aumentado	Normal o aumentado	Acidosis respiratoria

Tabla 1. Interpretación de la gasometría arterial en algunas enfermedades. En una gasometría arterial el valor de referencia de pH es de 7.35 a 7.4, de pCO2 es de 35 a 45 mm Hg y de HCO3- es de 20 a 24 mEq/L.¹

¹ Márquez-González H, et al. Lo que debe conocerse de la gasometría durante la guardia. Rev Med Inst Mex Seguro Soc [Internet]. 2012 [Consultado 6 Sep 2019]; 50 (4):389–396. Disponible en: https://www.medigraphic.com/pdfs/imss/im-2012/im124j.pdf

Tabla 2: Clasificación de los aminoácidos

Aminoácido	abreviatura de tres letras	abreviatura de una letra	Clasificación por carga	Clasificación según la capacidad de ser sintetizado
Glicina	Gly	G	No polar, alifático	No esencial
Alanina	Ala	А	No polar, alifático	No esencial
Valina	Val	V	No polar, alifático	Esencial
Leucina	Leu	L	No polar, alifático	Esencial
Isoleucina	Iso		No polar, alifático	Esencial
Prolina	Pro	Р	No polar, alifático	No esencial
Metionina	Met	M	No polar, alifático	Esencial
Tirosina	Tyr	Υ	Aromático	No esencial*
Triptofano	Trp	W	Aromático	Esencial
Fenilalanina	Phe	F	Aromático	Esencial
Cisteína	Cys	С	Polar, sin carga	No esencial*
Treonina	Tre	Т	Polar, sin carga	Esencial
Serina	Ser	S	Polar, sin carga	No esencial
Asparagina	Asn	N	Pol <mark>a</mark> r, sin carga	No esencial
Glutamina	Gln	Q	Polar, sin carga	No esencial
Arginina	Arg	R	P <mark>o</mark> lar, carga positiva	No esencial*
Lisina	Lys	K	Polar, carga positiva	Esencial
Histidina	Hys	Н	Polar, carga positiva	No esencial*
Aspartato	Asp	D	Polar, carga negativa	No esencial
Glutamato	Glu	E	Polar, carga negativa	No esencial

^{*}Aminoácidos esenciales sólo en lactantes. McKee T, McKee BJ. Bioquímica. 7a Ed. España: McGraw Hill Interamericana editores; 2020. Tabla modificada de: Nelson DL, Cox MM. *Lehninger. Principios de Bioquímica*. 7a edición. Barcelona, España. Omega, 2019.

Tabla 3: Enfermedades relacionadas al plegamiento incorrecto de las proteínas

Enfermedad	Distribución	Proteína/péptido precursor	Estructura nativa de la proteína/péptido	Número de residuos
Enfermedad de Alzheimer: esporádica, familiar y de inicio temprano	Localizada	Péptido β -amiloide	Nativamente desplegada	39 a 43
Enfermedad de Creutzfeltd- Jakob	Localizada	Proteína priónica (PrPc) y fragmentos de ella	Nativamente desplegada en los residuos 1-120 y α-hélice (121-230), en esta región se ha detectado un cambio conformacional hacia una cadena β (PrPsc)	253
Enfermedad de Huntington	Localizada	Huntingtina con una cadena larga de poliglutamina	Nativamente desordenada en casi toda la secuencia	3144
Amiloidosis debida a apoA-I	Sistémica	Región N-terminal de ApoA-I, se han encontrado fragmentos de varias longitudes	En la ApoA-I nativa, la región N- terminal está estructurada en α-hélice	80-93
Amiloidosis debida a hemodiálisis crónica	Sistémica, en menor proporción localizada	β -2 microglobulina	En especial en hoja β , plegamiento similar al de las inmunoglobulinas	99

Tabla modificada de: Mas-Oliva J, García-González VG. *El concepto de enfermedad asociado a la conformación de proteínas*. Ciudad de México, México. Manual Moderno; 2010. 15-16 p.

Tabla 4: Acción de algunos inhibidores sobre la actividad de las enzimas

Fármaco prototipo	Grupo farmacológico	Mecanismo de acción
Ibuprofeno	Antiinflamatorios no esteroideos derivado del ácido propiónico	Se une a la ciclooxigenasa (COX) de manera reversible
Atorvastatina	Estatinas	A través de la fracción semejante a ácido mevalónico, inhibe de forma competitiva a la β hidroximetilglutaril coenzima A reductasa (β -HMG CoA reductasa)
Alopurinol	Análogo de la hipoxantina	Inhibe de manera competitiva la xantina oxidasa a bajas concentraciones y la inhibe de manera no competitiva a altas concentraciones
Aspirina	Antiinflamatorios no esteroideos derivado de salicilatos	Se une a la COX de manera irreversible

- 1. Brunton, L. Goodman & Gilman. Las bases farmacológicas de la terapéutica. 13º Edición. Ciudad de México, México. McGraw-Hill; 2019.
- Nelson DL, Cox MM. Lehninger. Principios de Bioquímica. 7a edición. Barcelona, España. Omega, 2019.

Tabla 5: Radicales libres y enfermedades neurodegenerativas

Enfermedad	Características	Fisiopatología	Papel de los radicales libres
Enfermedad de Parkinson	 Deterioro cognitivo Temblor en reposo Bradicinesia Rigidez postural Inestabilidad del equilibrio 	Degeneración de células dopaminérgicas de la pars compacta de la sustancia nigra.	La concentración de la dopamina se reduce por acción de la monoaminooxidasa que genera especies reactivas de oxígeno y nitrógeno, las que inducen la peroxidación de lípidos, oxidación de proteínas y degeneración neuronal.
Enfermedad de Alzheimer	Disminución progresiva de la función cognitiva asociada a pérdida neural masiva	Formación de placas beta amiloide (seniles) y ovillos neurofibrilares (proteína tau).	El depósito de β amiloide activa la microglía, lo que genera respuesta inflamatoria y daño oxidativo (oxidación proteica, peroxidación lipídica, formación de EROS, estimulación de óxido nítrico sintasa). Esto induce mecanismos de apoptosis e interfiere con la sinapsis.
Demencias	Deterioro cognitivo general (aprendizaje, memoria, lenguaje, función ejecutiva, atención compleja, función perceptivo-motora, cognición social) que interfiere con las actividades diarias	Pérdida progresiva de poblaciones neuronales, formación de inclusiones intracitoplásmicas e intranucleares en neuronas, células de la glía y apoptosis.	Un estado de estrés oxidativo induce en la célula efectos tóxicos por oxidación de lípidos, proteínas, carbohidratos y nucleótidos, lo cual produce acumulación de agregados intracelulares, disfunción mitocondrial, excitotoxicidad y apoptosis.
Envejecimiento	Disminución de la capacidad de regeneración y reparación de los componentes celulares y extracelulares	Estrés oxidativo crónico.	Disminución de enzimas que catalizan la reducción del glutatión (glutatión reductasa o la glucosa-6P-deshidrogenasa) y a un aumento de la actividad de las enzimas que favorecen su oxidación (glutatión peroxidasa o la transferasa) Formación de especies reactivas de oxígeno generando peroxidación lipídica.

- 3. Lieberman M, Peet A. Marks Bioquímica Médica Básica. Un Enfoque Clínico. 6a Ed. Barcelona, España. Wolters Kluwer; 2023.
- 4. Dorado-Martínez C, Rugerio-Vargas C, Rivas-Arancibia S. *Estrés oxidativo y neurodegeneración*. Rev Fac Med UNAM [Internet]. 2003 [Consultado 6 Sep 2019]. 40 (6); 229-235. Disponible en: https://www.medigraphic.com/pdfs/facmed/un-2003/un036f.pdf
- 5. Paredes-Salido F, Roca-Fernández JJ. *Influencia de los radicales libres en el envejecimiento celular*. Offarm [Internet]. 2002 [Consultado 6 Sep 2019]. 21 (7); 96-100. Disponible en: https://www.elsevier.es/es-revista-offarm-4-pdf-13034834

Tabla 6: Enfermedades relacionadas con el metabolismo del glucógeno

Patología	Manifestaciones clínicas	Principales órganos afectados	Defecto enzimático
Enfermedad de Cori	Hipoglicemia en ayunoHepatomegalia en la infancia	HígadoMúsculo esquelético	Deficiencia de amilo-α(1,6)- glucosidasa (enzima desramificante)
Enfermedad de Von Gierke	 Hepatomegalia Hígado graso Hipoglicemia severa Enfermedad renal progresiva Retraso en el crecimiento y pubertad 	• Hígado • Riñón	Carencia de glucosa-6- fosfatasa
Enfermedad de McArdle	 Debilidad transitoria y calambres musculares posterior al ejercicio Ausencia de elevación del lactato posterior al ejercicio intenso Puede haber mioglobinuria y mioglobinemia . 	 Hígado Músculo esquelético 	Carencia de glucógeno fosforilasa muscular
Enfermedad de Andersen	HepatoesplenomegaliaInsuficiencia hepática severa	Hígado	Deficiencia de amilo $\alpha(1,4)$ a $\alpha(1,6)$ transglucosidasa (enzima ramificante)

Referencias:

- 6. Lieberman M, Peet A. Marks Bioquímica Médica Básica. Un Enfoque Clínico. 6a Ed. Barcelona, España. Wolters Kluwer; 2023.
- 7. Ferrier DR. Bioquímica. 7a edición. Barcelona, España. Wolters Kluwer; 2018.

Tabla 7: Inhibidores de la Cadena Respiratoria

	Fármaco		Mecanismo de acción
	amital	Barbitúrico	Inhibe la transferencia de electrones desde los centros
COMPLEJO I	rotenona	Plaguicida vegetal	de hierro-azufre del complejo I a la ubiquinona.
COMPLEJO II	malonato	Análogo estructural con el ácido malónico y ácido succínico	Inhibidor competitivo de succinato deshidrogenasa y bloquea la transformación del succinato a fumarato
COMPLEJO III	antimicina A	Fungicida, insecticida y miticida producida por <i>Streptomyces</i>	Inhibe la transferencia de electrones entre los citocromos b y c1 del citocromo c oxidorreductasa
	Cianuro	Sustancia química y venenosa en alimentos y plantas	1114
COMPLEJO IV	Azida de sodio	Cristal que se descompone por encima de 275°C produciendo gases tóxicos.	Se une al citocromo c oxidasa alterando el transporte de electrones, así como impidiendo la entrega de O ₂ y formación de H ₂ O.
	Monóxido de carbono	Gas incoloro e inoloro que puede causar la muerte	

- 8. Nelson DL, Cox MM. Lehninger. Principios de Bioquímica. 7a edición. Barcelona, España. Omega, 2019.
- 9. Brunton L.L., & Chabner B.A., & Knollmann B.C.(Eds.), (2017). Goodman & Gilman: Las bases farmacológicas de la terapéutica, 12e. McGraw Hill.
- 10. Bolaños Morera, Pamela, & Chacón Araya, Carolina. (2017). Intoxicacion por monoxido de carbono. Medicina Legal de Costa Rica, 34(1), 137-146. R

Tabla 8: Técnicas de manipulación del DNA, RNA y proteínas

Técnica	Método	Ejemplo de uso diagnóstico
Northern blot	Electrotransferencia de RNA	Acrodermatitis
		 Identificación de oncogenes
	1112011	 Síndrome de Angelman
Southern blot	Electrotransferencia de DNA	 Síndrome de Prader-Willi
1.1		 Identificación de virus y micobacterias
Western blot	Electrotransferencia de proteínas	 Confirmación de infección por VIH
Western blot	Western blot Electrotransferencia de proteinas	Enfermedad de Huntington

Referencias:

- 11. Rodwell VW, et al. Harper Bioquímica Ilustrada. 30a edición. Ciudad de México, México. McGraw-Hill Medical; 2016.
- 12. Lieberman M, Peet A. Marks Bioquímica Médica Básica. Un Enfoque Clínico. 6a Ed. Barcelona, España. Wolters Kluwer; 2023.

Tabla 9: Antibióticos que interfieren en la transcripción

Fármaco	Grupo farmacológico	Mecanismo de acción
rifampicina	rifamicina	Se une e inhibe la actividad de la subunidad ${m eta}$ de la RNA polimerasa dependiente de DNA (rpoB) de bacterias
actinomicina D	actinomicinas	Se une e intercala con el DNA, creando complejos que impiden el paso y actividad de las RNA polimerasas de eucariontes y procariontes
α -Amanitina	No aplica	Inhibe la elongación del mRNA al unirse a la subunidad grande de las RNA polimerasas II y III

Referencias:

13. Nelson DL, Cox MM. Lehninger. Principios de Bioquímica. 7a edición. Barcelona, España. Omega, 2019.

Tabla10: Antibióticos que interfieren en la traducción

Fármaco/toxina	Grupo farmacológico	Mecanismo de acción
Doxiciclina	Tetraciclinas	Inhibe la unión aminocil-tRNA al sitio A de la subunidad menor (30S) del ribosoma bacteriano
Estreptomicina	Aminoglucósido	Se une a la subunidad 30S. A bajas concentraciones causa una mala lectura del código genético (incorporación de aminoácidos erróneos); a altas concentraciones inhibe el inicio de la traducción
Cloranfenicol	Fenicoles	Inhibe la traducción al bloquear la acción de la peptidil- transferasa de los ribosomas bacterianos (también afecta ribosomas mitocondriales)
Eritromicina	Macrólido	Inhibe la traslocación del tRNA del sitio A al sitio P (subunidad 50S)
Clindamicina	Lincosamidas	Inhibe el sitio A de la subunidad 50S y la acción de la peptidil-transferasa
Linezonid	Oxazolidinonas	Inhibe la entrada del RNAt-fMet al sitio P de la subunidad 50S
Mupirocina	Sin grupo	Inhibe la isoleucil-tRNA sintetasa, con lo que se inhibe la síntesis de proteínas
Toxina diftérica	No aplica	Cataliza la ADP-ribosilación del factor de elongación eEF2, inactivándolo

^{14.} Brunton, L. Goodman & Gilman. Las bases farmacológicas de la terapéutica. 12º Edición. Ciudad de México, México. McGraw-Hill; 2012.

^{15.} Nelson DL, Cox MM. Lehninger. Principios de Bioquímica. 7a edición. Barcelona, España. Omega, 2019.

Tabla 11: Tipos de RNA

Tipos de RNA	Características	Función	Abundancia
mRNA	Posee un grupo de 7-metilguanosina-tifosfato fijo en su extremo 5´ que por lo general además contiene un nucleótido 2´-O-metilpurina. También posee una cola de poliadenilato (poliA) en su extremo 3´	Contiene el transcrito modificado de un gen, sirviendo como una plantilla que utiliza el ribosoma para la adición de aminoácidos en la síntesis de una proteína	2-5%
tRNA	Contiene cuatro brazos principales; el brazo aceptor termina en los nucleótidos CCA (los aminoácidos se unen a la adenina); los brazos D, ΤψC y extra ayudan a definir el tRNA.	Traducción de la información en la secuencia de nucleótidos del mRNA hacia aminoácidos específicos.	20%
rRNA	En el ribosoma, la subunidad 60s contiene rRNA 5S, 5.8S, 28S; mientras que la subunidad 40s al rRNA 18S	Constituyen los complejos ribonucleoproteínicos en los que se produce la síntesis de proteínas.	80%
RNA pequeños	Lo constituyen los RNA pequeños (snRNA) y micro-RNA (miRNA)	No participan directamente en la síntesis de proteínas. Originan inhibición de la expresión del gen al aminorar la producción de una proteína específica.	>1%

Referencias:

- 16. Rodwell VW, et al. Harper Bioquímica Ilustrada. 30a edición. Ciudad de México, México. McGraw-Hill Medical; 2016.
- 17. Lieberman M, Peet A. Marks Bioquímica Médica Básica. Un Enfoque Clínico. Barcelona, España. Wolters Kluwer; 2018.
- 18. Nelson DL, Cox MM. Lehninger. Principios de Bioquímica. 7a edición. Barcelona, España. Omega, 2019

Tabla 12: Duplicación del DNA

	Función
Ori C	Origen de duplicación
DnaA	Abre la primera horquilla
DnaB (helicasa)	Separan las hebras de DNA progenitoras (desenrollan la doble hélice)
PUCS / SSB	Proteínas de unión al DNA Inhibe la unión de la Cadena complementaria
Subunidad <i>B</i>	B abrazadera Alta procesividad
Polimerasa I	Baja procesividad Sirve como primer / cebador
Polimerasa II	Sirve para activar sistema SOS (participa en ruptura cromosómica)
Polimerasa III	Actúa en la sín <mark>te</mark> sis <mark>de DNA</mark> Tiene abrazadera Reparación 3' —> 5'
Primasa	Síntesis de primer/cebador (RNA)
Topoisomerasa II (DNA girasa)	Disminuye la tensión de superenrollamiento
Topoisomerasa IV	Separa cromosomas concatenados

Referencias:

- 1. McKee T, McKee BJ. Bioquímica. 7a Ed. España: McGraw Hill Interamericana editores, 2020
- 2. Leberman M. Peet A. Bioquímica Médica Básica. 6 a Ed WoltersKliwer/LippincottWilkins, 2023.

Tabla 13: Duplicación en procariotas y eucariotas

Función	Procariotas	Eucariotas	
Sitio de origen	Ori C	ARS (múltiples secuencias de inicio)	
Unión al sitio de origen	DnaA	ORC	
Helicasa	DnaB	MCM	
Unión a cadena sencilla	PUCS / SSB	RPA	
Abrazadera (procesividad)	Subunidad B	PCNA	
Polimerización de cadena líder y rezagada	Polimerasa III	Polimerasa $arepsilon$ y Polimerasa δ	
Retira cebadores	Polimerasa I	RNAsa/Dna2 y FEN1	
Polimerización	No aplica	Polimerasa γ (duplicación en mitocondrias)	
Síntesis de cebadores	DnaG	Polimerasa $lpha$	
Disminuye la tensión de superenrollamiento	Topoisomerasa II (girasa)	Topoisomerasa I y II	

Referencias:

- 1. McKee T, McKee BJ. Bioquímica. 7a Ed. España: McGraw Hill Interamericana editores, 2020
- 2. Leberman M. Peet A. Bioquímica Médica Básica. 6 a Ed WoltersKliwer/LippincottWilkins, 2023.

Tabla 14: Enzimas de escape

Nombre de la enzima	Función metabólica	Localización	Relevancia clínica
Lactato deshidrogenasa	Usa NADH + H ⁺ como cofactor, cataliza la reducción del piruvato a lactato en el metabolismo anaeróbico.	LDH-1: miocardio. LDH-2: sistema reticuloendotelial. LDH-3: pulmones. LDH-4: riñón, placenta y páncreas. LDH-5: hígado y músculo estriado.	 Lesión hepatocelular. Lesión miocárdica (infarto agudo al miocardio, traumatismo, insuficiencia cardíaca). Anemia hemolítica. Cáncer. Embarazo: preeclampsia, síndrome de hemólisis, elevación de enzimas hepáticas y trombocitopenia (HELLP).
Creatina cinasa (CK)	Participa en la fosforilación de la creatina para formar fosfocreatina, una molécula de reserva energética.	CK-BB (CK1): cerebro y pulmón. CK-MB (CK2): miocardio. CK-MM (CK3): músculo esquelético.	 Lesión miocárdica. Lesión del músculo esquelético (Rabdomiólisis).
Alanina aminotransferasa (ALT) o transaminasa glutámico pirúvica (TGP)	Transfiere un grupo amino de la alanina al α-cetoglutarato para la formación de piruvato y glutamato.	Se encuentran principalmente en hígado y en menor medida en el músculo esquelético, eritrocitos, corazón, páncreas, riñón y cerebro. La ALT es más específica del hígado.	 Lesión hepatocelular (farmacológica, infecciosa, alcohólica, autoinmune). Pancreatitis. Enfermedades cardiovasculares.
Aspartato aminotransferasa (AST), o transaminasa glutámico oxalacética (TGO)	Transfiere un grupo amino desde el aspartato al oxoglutarato, formándose glutamato y oxalacetato.	inguato,	
γ-glutamil transpeptidasa (GGT)	Transfiere grupos funcionales γ-glutamil desde moléculas como el glutatión a un aceptor, además, transfiere aminoácidos.	Predomina en hígado, seguido del páncreas, el bazo y el pulmón. En las células se localiza en las membranas, en los microsomas, en la fracción soluble del citoplasma y en los conductillos biliares intrahepáticos.	un aumento de la FA. Hepatopatías. Pancreatitis.

Fosfatasa alcalina (ALP, FA)	Intervienen en la hidrólisis de las uniones éster de fosfato a pH alcalino. Tiene 3 funciones: a) Precipitación del fosfato cálcico en los huesos. b) Absorción de fosfatos por el intestino. c) Síntesis de proteínas hísticas e hidrólisis de las uniones éster de fosfato en riñón e hígado.	Se localiza principalmente en el hígado, los huesos y el intestino.	 Extrahepáticas: lesión de la vía biliar, tumores pancreáticos. Intrahepáticas: Enfermedades metabólicas, lesión hepática.
α-amilasa salival		Glándulas salivales.	Trastornos de las glándulas salivales.
α-amilasa pancreática Lipasa	Digiere el almidón y el glucógeno de la dieta al hidrolizar los enlaces α-1,4 glucosídicos. Hidroliza una molécula de triacilglicerol en dos	Se origina en el páncreas, las glándulas salivales y, en menor medida, las trompas uterinas, músculo esquelético, intestino, pulmones y el tejido adiposo. Se origina en el páncreas, pero	 Lesión de células pancreáticas. Patologías hepatobiliares. La lipasa no se eleva en trastornos de las
23,5400	ácidos grasos libres y un 2-monoacilglicerol.	también en el estómago, el intestino y los pulmones.	glándulas salivales.
Fosfatasa ácida	Hidroliza ésteres de monofosfato orgánicos para producir fosfato inorgánico y alcohol.	Predomina en el tejido prostático y se encuentra en menor proporción en estómago, hueso, hígado, músculo, bazo, eritrocitos y plaquetas.	Cáncer de próstata.Enfermedades óseas.
Esterasa leucocitaria	Liberan 3-hidroxi-5-fenilpirrol después de realizar la hidrólisis del sustrato. Se liberan de los leucocitos lisados en la orina.	Leucocitos.	Infección de vías urinarias.

Referencias:

- 1. Pagana K, Pagana T. Función hepática. En: Laboratorio clínico, indicaciones e interpretación de resultados. 5ª ed. México: Manual Moderno; 2015.
- 2. Pagana K, Pagana T. Enzimas cardiacas. En: Laboratorio clínico, Indicaciones e interpretación de resultados. 5ª ed. México: Manual Moderno; 2015.
- 3. D'Avola D, Herrero JI. Pruebas funcionales hepáticas. En: Prieto-Valtueña JM, Yuste-Ara JR. Balcells. La clínica y el laboratorio. 23a ed. España: Elsevier; 2019.
- 4. Betés M, Bojórquez A. Pruebas de función pancreática exocrina. En: Prieto-Valtueña JM, Yuste-Ara JR. Balcells. La clínica y el laboratorio. 23a ed. España: Elsevier; 2019.
- 5. Lucena JF, Quiroga J, Colina I, et al. Orina. En: Prieto-Valtueña JM, Yuste-Ara JR. Balcells. La clínica y el laboratorio. 23a ed. España: Elsevier; 2019.