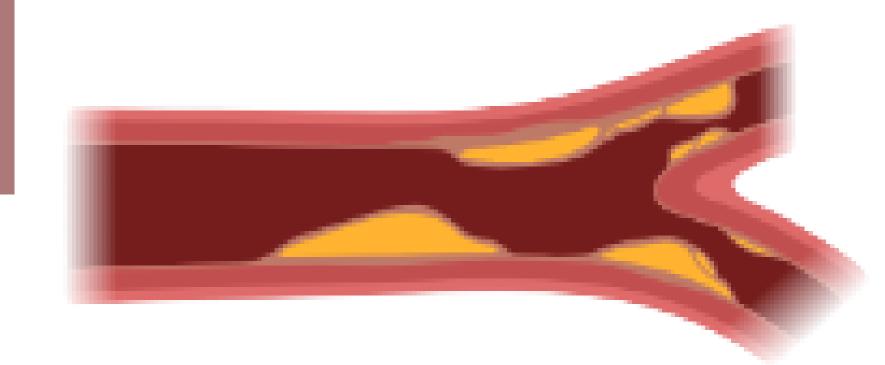


El papel del sistema inmune en la aterosclerosis

Introducción


La aterosclerosis es una enfermedad crónica, generalizada y progresiva que afecta sobre todo a las arterias de mediano tamaño; es la base de la patogenia de las enfermedades coronarias, cerebrales y vascular periférica; es la causa de mayor morbilidad en el mundo occidental.

Factores de riesgo

- Adquiridos: concentración de colesterol, tabaquismo, HAS. - Hereditario: mutaciones en el gen del receptor HDL.

Objetivo

Mencionar cual es la participación del sistema inmune en la aterosclerosis

¿Qué es lo que pasa?

Inicialmente hay disfunción endotelial con depósito subendotelial y oxidación de LDL (OxLDL), liberando ROS (actúan como DAMPs) y activan receptores inmunitarios, lo que estimula el reclutamiento célular y provoca inflamación vascular.

Los monocitos que penetran en la pared arterial en respuesta a las citocinas quimiotácticas (MCP-1) se diferencian. Las OxLDL activan a los macrófagos de la placa que acoplan la formación de células espumosas (una fuente de mediadores).

Las células dendriticas procesan las OxLDL y presentan los péptidos de la ApoB a los linfocitos T. La diferenciación en linfocitos Th1 favorece la progresión inflamatoria del ateroma, los linfocitos Treg disminuyen la respuestas inflamatoria; a medida que la enfermedad progresa los Treg se ve superados por las células T efectoras.

Las respuestas humorales de los linfocitos B2 parecen ser proaterogénicas, produciendo IgG de alta afinidad contra las LDL o la ApoB agravando la ateroesclerosis.

Cuando los monocitos llegan a la íntima, comienzan a acumular lípidos (también se llama macrófagos cargados de lípidos) gracias a los receptores scavenger y toll-like, encargados de varias funciones (reconocer células

apoptóticas).

Conclusión

Dada la alta prevalencia de esta condición, comprender cuál es la participación del sistema inmune en la génesis y mantenimiento de la aterosclerosis abre la puerta al uso de nuevas terapias para estabilizar las placas y tratar la inflamación arterial.

Bibliografia

- Imagenes creadas con BioRender

Rodríguez Fernández Naomi Ruíz Martín Brayan

Elaboró

¿Cómo se forman las células

espumosas?