
The protein kinase C inhibitors bisindolylmaleimide I (GF 109203x) and
IX (Ro 31-8220) are potent inhibitors of glycogen synthase kinase-3

activity

Ingeborg Hers*, Jeremy M. Tavarë, Richard M. Denton
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Abstract Here we report that the widely used protein kinase C
inhibitors, bisindolylmaleimide I and IX, are potent inhibitors of
glycogen synthase kinase-3 (GSK-3). Bisindolylmaleimide I
and IX inhibited GSK-3 in vitro, when assayed either in cell
lysates (IC50 360 nM and 6.8 nM, respectively) or in GSK-3LL
immunoprecipitates (IC50 170 nM and 2.8 nM, respectively)
derived from rat epididymal adipocytes. Pretreatment of
adipocytes with bisindolylmaleimide I (5 WWM) and IX (2 WWM)
reduced GSK-3 activity in total cell lysates, to 25.1 þ 4.3% and
12.9 þ 3.0% of control, respectively. By contrast, bisindolyl-
maleimide V (5 WWM), which lacks the functional groups present
on bisindolylmaleimide I and IX, had little apparent effect. We
propose that bisindolylmaleimide I and IX can directly inhibit
GSK-3, and that this may explain some of the previously
reported insulin-like effects on glycogen synthase activity.
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1. Introduction.

The bisindolylmaleimide derivatives of staurosporine are
widely used as speci¢c inhibitors of protein kinase C (PKC)
isoforms. Bisindolylmaleimide I (also known as GF 109203x)
and IX (also known as Ro 31-8220) are the most commonly
used PKC inhibitors [1^3]. In contrast, bisindolylmaleimide V
does not inhibit PKC isoforms and is used as a negative con-
trol as it lacks the important functional groups present on
bisindolylmaleimide I and IX [4].

Recently, several additional pharmacological e¡ects of bis-
indolylmaleimide IX have been reported. Beltman et al. [5]
showed that bisindolylmaleimide IX strongly stimulates the
activity of c-Jun-N-terminal kinase (JNK) and the expression
of c-jun, while it inhibits growth factor-stimulated mitogen-
activated protein (MAP) phosphatase-1 (MKP-1) gene expres-
sion in Rat-1 ¢broblasts in a PKC-independent manner. In
contrast, bisindolylmaleimide I had no e¡ect on these signal-
ling components.

A later report by this group showed that bisindolylmale-
imide IX induced the phosphorylation and possible activation
of p38 MAPK, as well as phosphorylation of the activator
protein-1 (AP-1) family member c-Jun, and a concomitant

increase in AP-1 activity [6]. Subsequently, Standaert et al.
[7] reported that bisindolylmaleimide IX activates JNK and
increases glycogen synthase activity in primary rat adipocytes,
independently of PKC inhibition. The authors concluded that
JNK rather than PKC, protein kinase B or ERK1/2, was
involved in the activation of glycogen synthase by bisindolyl-
maleimide IX.

Glycogen synthase is a key enzyme that catalyses the incor-
poration of the glycosyl residue of UDP-glucose into glyco-
gen, and its activity is regulated by multisite phosphorylation.
In particular, glycogen synthase kinase-3 (GSK-3) phospho-
rylates and inhibits the enzyme [8,9]. Insulin has been
proposed to stimulate glycogen synthase by promoting an
inhibition of GSK-3 [10] and/or activation of protein phos-
phatase-1 [11], resulting in a net dephosphorylation of glyco-
gen synthase.

In our investigations of the mechanism by which insulin
regulates glycogen synthase activity in rat adipocytes, we
found that bisindolylmaleimide I and IX were potent inhibi-
tors of GSK-3. We propose that this may be the likely mech-
anism by which bisindolylmaleimide IX stimulates glycogen
synthesis.

2. Materials and methods

2.1. Materials
Male Wistar rats (160^210 g) were fed ad libitum on a stock diet

(CRM; Bioshore, Manea, Cambs., UK). Bisindolylmaleimide I (GF
109203x) and V were from Calbiochem (Nottingham, UK), bisindo-
lylmaleimide IX (Ro 31-8220) was from Alexis Corporation (UK) and
the anti-GSK-3L monoclonal antibody was purchased from Trans-
duction Laboratories (Becton Dickinson, UK). All other reagents
were as described [12].

2.2. Preparation and incubation of epididymal fat cells
Adipocytes were isolated from the epididymal fat pads of Wistar

rats as described previously [13]. Cells (150^250 mg dry cell weight)
were extracted in 1 ml of ice-cold 50 mM Tris (pH 7.5) containing
1 mM EDTA, 120 mM NaCl, 50 mM NaF, 40 mM L-glycerophos-
phate, 1 mM benzamidine, 1% NP40, 1 WM microcystin and 1 Wg/ml
each of pepstatin, leupeptin and antipain. Lysates were centrifuged
twice at 10 000Ug for 10 min at 4³C prior to use, and the infranatant
was taken for measurement of protein kinase activity.

2.3. GSK-3 activity assay
GSK-3 activity was measured in cell lysates and in GSK-3L immu-

noprecipitates. GSK-3L was immunoprecipitated from cell lysates by
tumbling with 4 Wl of anti-GSK-3L monoclonal antibody and 3.75 mg
protein A-Sepharose for 2 h at 4³C. The resulting immunoprecipitates
were washed three times in kinase assay bu¡er (20 mM HEPES, pH
7.5, 20 mM L-glycerophosphate and 1 mM EDTA) and ¢nally resus-
pended in 300 Wl of kinase assay bu¡er containing 0.1% mercapto-
ethanol and 2.5 WM cAMP-dependent protein kinase inhibitor peptide
(IP20). The activity of GSK-3 was measured in duplicate in 20 Wl of
cell lysate or 20 Wl of GSK-3L immunoprecipitate using the synthetic
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peptide substrate RRAAEELDSRAGS(P)PQL (0.71 mg/ml) [14] in
the absence or in the presence of the GSK-3 inhibitor, lithium chlo-
ride (50 mM) [15]. The assay was terminated after 15 min incubation
with [Q- 32P]ATP by spotting onto P81 ion-exchange paper. The paper
was washed four times in 0.6% phosphoric acid and bound radio-
activity quanti¢ed by scintillation counting. Phosphorylation of pep-
tide by adipocyte lysates and by GSK-3L immunoprecipitates was
essentially completely inhibited by lithium chloride. The average ac-
tivity of GSK-3 in the extracts was 1220 þ 144 pmol peptide phos-
phorylated/min/g dry weight of adipocytes (n = 11). The average ac-
tivity of GSK-3L in immunoprecipitates was 276 þ 54 pmol peptide
phosphorylated/min/g dry weight of adipocytes (n = 11).

3. Results

3.1. Direct e¡ects of bisindolylmaleimide I and IX on GSK-3
activity

To investigate whether bisindolylmaleimide I and IX a¡ect
GSK-3 activity, freshly isolated primary adipocytes were ex-

tracted and GSK-3 activity was subsequently measured in
total lysates and in GSK-3L immunoprecipitates. Bisindolyl-
maleimide I inhibited GSK-3 activity with an IC50 of 360 nM
in total lysates and an IC50 of 190 nM in GSK-3L immuno-
precipitates (Fig. 1A). Bisindolylmaleimide IX was much
more potent in inhibiting GSK-3 activity in total lysates
(IC50 = 6.8 nM) and in GSK-3L immunoprecipitates
(IC50 = 2.8 nM, Fig. 1B). In contrast, bisindolylmaleimide V
(5 WM) had no major e¡ect on GSK-3 activity in total lysates
(85.6 þ 9%, n = 7) and immunoprecipitates (98.3 þ 12.5%,
n = 6).

3.2. E¡ect of bisindolylmaleimide I, V and IX on GSK-3
activity in primary adipocytes

As expected, incubation of intact adipocytes with the inhib-
itors bisindolylmaleimide I and IX strongly inhibited GSK-3

Fig. 1. E¡ect of bisindolylmaleimide I and IX on GSK-3 activity in
total extracts and in immunoprecipitates. Total lysates (F) or GSK-
3L immunoprecipitates (R) from rat epididymal adipocytes were in-
cubated for 5 min at 30³C with di¡erent concentrations of bisindol-
ylmaleimide I (A) and bisindolylmaleimide IX (B) before addition
of [Q-32P]ATP and substrate peptide. The assay was terminated after
15 min incubation with [Q-32P]ATP by spotting onto P81 ion-ex-
change paper. Data (mean þ S.E.M., 3^5 observations) are expressed
as percentage of GSK-3 activity in the absence of inhibitor.

Fig. 2. E¡ect of various bisindolylmaleimides on GSK-3 activity in
rat epididymal adipocytes. Cells were incubated with vehicle
(DMSO), bisindolylmaleimide I (bis I, 5 WM), V (bis V, 5 WM) and
IX (bis IX, 2 WM) for 5 min at 37³C prior to addition of insulin
(ins, 83 nM). Cells were extracted after a 10 min incubation and
GSK-3 activity was subsequently measured in total cell lysates (A)
and in GSK-3L immunoprecipitates (B) as described in the legend
to Fig. 1. Data (mean þ S.E.M., 3^5 observations) are expressed as
percentage of GSK-3 activity in the absence of inhibitor.
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activity, when subsequently assayed in total lysates (Fig. 2A).
In contrast, bisindolylmaleimide V had no e¡ect. Insulin in-
hibited GSK-3 activity to 59 þ 6% of control and the e¡ect
was not additive to bisindolylmaleimide I- and IX-induced
GSK-3 inhibition (Fig. 2A). When GSK-3L was immunopre-
cipitated following extraction of the cells, the inhibitory e¡ect
of bisindolylmaleimide I was lost (Fig. 2B). In contrast, the
more potent inhibitor, bisindolylmaleimide IX, still reduced
GSK-3 activity to 59 þ 9% of control.

4. Discussion

In this study we show that GSK-3, a key kinase in insulin-
induced activation of glycogen synthase, is potently and di-
rectly inhibited by the PKC inhibitors bisindolylmaleimide I
and IX. Both bisindolylmaleimides strongly inhibited GSK-3
activity when added directly to cell lysates and GSK-3L im-
munoprecipitates. Bisindolylmaleimide IX was the more po-
tent inhibitor of GSK-3 activity, with an approximately 100
times lower IC50 value than bisindolylmaleimide I. Bisindolyl-
maleimide IX is an equally potent inhibitor of both GSK-3
and PKC (IC50 values for GSK-3 of 3^7 nM found in this
study compared to an IC50 of 5 nM for PKC [16]).

It is likely that bisindolylmaleimide I and IX compete re-
versibly with ATP for binding to the nucleotide-binding site of
GSK-3, as proposed for PKC [1]. The loss of the inhibitory
e¡ect of the agents during immunoprecipitation of GSK3L
from cells previously exposed to them is compatible with
this. Bisindolylmaleimide I had little e¡ect on insulin-induced
inhibition of GSK-3, under conditions where it would be ex-
pected to potently inhibit PKC activity [1]. This strongly sug-
gests that PKC, although it has previously been implicated in
GSK-3 regulation [17,18], is not involved in this process. This
is consistent with observations that insulin-induced inhibition
of GSK-3 in mouse 10T1/2 ¢broblasts was una¡ected by bis-
indolylmaleimide IX, whereas Wingless-induced inactivation
was blocked [19].

Many of the recently reported stimulatory e¡ects of bisin-
dolylmaleimide IX [5^7] may be explained by its ability to
inhibit GSK-3. Bisindolylmaleimide IX increases glycogen
synthase activity in adipocytes. This e¡ect was attributed to
the ability of bisindolylmaleimide IX to stimulate JNK activ-
ity [7]. Given the observations in the present study, it is more
simply explained by inhibition of GSK-3, since GSK-3, which
has a high activity in resting cells, is able to phosphorylate
and inactivate glycogen synthase. In contrast to insulin, bisin-
dolylmaleimide IX was shown to stimulate glycogen synthase
activity in a phosphatidyl inositol-3 kinase (PI3 kinase)-inde-
pendent manner [7], which is consistent with a direct inhib-
itory e¡ect on GSK-3.

Bisindolylmaleimide IX and insulin have additive e¡ects on
glycogen synthase activity [7]. Similar results have recently
been found with lithium, a speci¢c GSK-3 inhibitor, and in-
sulin [20]. This contrasts with the e¡ects of insulin and bisin-
dolylmaleimide IX on GSK-3 inhibition, which were not ad-
ditive (Fig. 2). This apparent discrepancy may be explained by
the ability of insulin to activate protein phosphatase-1 [21],
and hence the dephosphorylation of glycogen synthase by a
mechanism independent of GSK-3.

Several groups have reported that bisindolylmaleimide IX
activates JNK in cells in a PKC-independent manner [5,7].
Activation of JNK by insulin is blocked by wortmannin in

CHO cells expressing the insulin receptor and is likely, there-
fore, to be downstream of PI3 kinase activation [22]. This
raises the possibility that inhibition of GSK-3 activity may
lead, presumably indirect, to the activation of JNK. This hy-
pothesis is consistent with the observation that the bisindolyl-
maleimide IX- and insulin-stimulated JNK activation in rat
adipocytes are not additive [7]. It requires rigorous testing,
particularly as bisindolylmaleimide IX is known to inhibit
other protein kinases, such as MAPKAP kinase and p70S6
kinase [16]. However, it should be noted that these particular
kinases are unlikely to be involved as insulin and bisindolyl-
maleimide IX have opposite e¡ects on their activity.

One of the substrates of JNK is c-Jun, which forms part of
the activating protein-1 complex (AP-1 complex), and is phos-
phorylated by JNK on two regulatory sites Ser-63 and Ser-73.
Phosphorylation of these sites transactivates c-Jun, and may
also explain the increased c-jun expression induced by bisin-
dolylmaleimide IX [5]. Stimulation of AP-1 activity in re-
sponse to bisindolylmaleimide IX is likely, therefore, to be
the result of increased c-Jun synthesis and/or phosphorylation
of c-Jun on Ser-63 and Ser-73 by increased JNK activity [6].
However, GSK-3 phosphorylates c-Jun on three sites in a
region proximal to the DNA-binding domain (residues 227^
252), resulting in decreased c-Jun DNA binding and transcrip-
tional activity [23]. Indeed, transfection experiments have
shown that AP-1 activity is inhibited by co-expression of
GSK-3 [24]. Inhibition of GSK-3 activity by bisindolylmale-
imide IX might therefore abolish this negative restraint, there-
by increasing c-Jun/AP-1 activity.

In summary, we have demonstrated that both bisindolyl-
maleimide I and IX are potent and direct inhibitors of
GSK-3. Our results raise the possibility that some of the
insulin-like e¡ects of bisindolylmaleimide IX, in particular
the activation of glycogen synthase, may be the result of the
ability of these compounds to inhibit GSK-3.
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